

PEGs in Janet for fun and Profit

intro
● Thanks to Justin Huffman for the topic and a starting point
● Any errors or poor pacing are my own

intro
● Andrew Owen, pronouns: he/him
● Software Developer: games, languages, web apps
● https://junglecoder.com/talks/PEGs/slides.pdf

What we'll be covering

● What is parsing?
● Parsing Knife-work
● Comprehensive parsing
● PEGs (in detail)

What is parsing?

What is parsing?
● Giving Flat Data Structure

Parsing: Flat data to structured data

● Two general approaches
● Knife-like, small target, a lot of noise, slice out interesting bits,

permissive of incorrcetly formatted data
● Comprehensive sorting of every character to a place and

category, usually error if data formatted incorretcly

Parsing Knifework
● Slicing out the interesting bits

Parsing Knifework: Usual suspects
CLI Tools

● cut
● sed
● grep

Programming techniques
● substring
● split
● explode
● gsub
● gmatch

Parsing knifework: Boxed in
● Fixed width data is easy to deal with

Data:
boxbox&box
boxHEADbox
boxBODYbox
boxFEETbox
boxbox&box

Parsing:
tail -n +2 data.txt |
head -n 3 |
cut -b 4-7

Result:
HEAD
BODY
FEET

Parsing knifework: Boxed in
● But doesn't cope with variance well

Data:
boxbox&box
boxHEADbox
boxARMSbox
boxFINGERbox
boxBODYbox
boxFEETbox
boxbox&box

Parsing:
tail -n +2 data.txt |
head -n 5 |
cut -b 4-7

Result:
HEAD
ARMS
FING
BODY
FEET

Parsing knifework: Boxed in
● Patterns can help pick things out

Data:
boxbox&box
boxHEADbox
boxARMSbox
boxFINGERbox
boxBODYbox
boxFEETbox
boxbox&box

Parsing:

sed -E "s/&|box//g" data.txt

Result:

HEAD
ARMS
FINGER
BODY
FEET

Parsing knifework: CSV
● Sometimes a format is simple

Data:

x,text,y
10,Hello,20
10,World!,40

Parsing:

cut -f 2 -d, data.csv

Result:

text
Hello
World!

Parsing knifework: CSV
● Until it isn't

Data:
x,text,y
10,"Hello,
World!",20
10,Enjoy this?,60

Parsing code:

cut -f 2 -d, data.csv

Result:

text
"Hello
20
Enjoy this?

Comprehensive parsing
● Parsing in Scripts 201

Comprehensive parsing
● Characters don't always mean the same thing

Comprehensive parsing
● String literals, outside `"` means "start a string literal"
● Inside a string literal, `"` means "end a string literal"

Tools for comprehensive parsing
Programs

● yacc/lexx
● ANTLR
● jq
● csvkit
● nushell
● Powershell

In Code
● Big Switch Statements
● Argument Parsing
● Recursive Descent Parsing
● Parser Combinators
● PEGs

Parsing Expression Grammars
● PEGs model Recursive Descent parsers
● Loosely equivalent to a collection of functions that

● Call into each other
● Switch on input tokens
● Build up a structure

Parsing Expression Grammars

● PEGs in use
● Janet uses PEGs in lieu of regex

● it even has an `re` library that uses a PEG to compile a subset of regex
syntax to another PEG

● Python's parser got switched to a PEG in 2020 (PEP 617)
● DuckDB plans on switching to a PEG parser for flexibility

(https://duckdb.org/2024/11/22/runtime-extensible-parsers.html)

Parsing Expression Grammars

● PEG Libraries
● Lua, lpeg, has name recognition
● Janet, has PEGs built in
● (many other exist for other languages, Raku's grammars are similar)

Janet
● Janet, a quick review

● https://janet-lang.org
● Built as a lisp-alike language, macros, parens
● Inspired by Lua & Clojure, about 2x-3x bigger than Lua
● Packs a lot into a small package (cross platform async runtime, PEGs, etc)

FizzBuzz in Janet
(defn divides [by n] (zero? (mod n by)))
(each n (range 101)
 (cond (divides 15 n) (print "FizzBuzz")
 (divides 5 n) (print "Buzz")
 (divides 3 n) (print "Fizz")
 true (print n)))

PEGs in Janet

● I'll be using Janet's PEG syntax from here on out, a small
example looks like this:

(def pattern '(* "abc" "def"))

Janet: Macros
● PEGs in Janet use macros and quotation
● Mostly to keep default Janet logic from applying,

so that the PEG engine can turn the AST into a PEG directly

'(this is a quoted list)

'{:and this :is a quoted table}

PEGs in Janet: Constants
● Numbers match that number of characters

'12 # Matches any 12 characters

● Strings match themselves
"foo" # Matches "foo" literally

PEGs in Janet: Sequence

'(* "a" "b" "c")
or
'(sequence "a" "b" "c")

Matches the string "abc"

PEGs in Janet: Choice

'(+ "a" "b" "c")
or
'(choice "a" "b" "c")

● Matches "a", "b" or "c"

PEGs in Janet: Range
● Range matches any character in the given range(s)

'(range "04" "59")
same as
'(range "09")
or
'(+ "0" "1" "2" "3" "4"
 "5" "6" "7" "8" "9")

● Matches "0", "9" and so on

PEGs in Janet: Repeating a pattern

0 or more repetitions
'(any (range "09"))

1 or more repetitions
'(some (range "09"))

2 to 4 repetitions
'(between 2 4 (range "09"))

A specific number of repetitions
'(repeat 4 (range "09"))

PEGs in Janet: Naming Patterns

'{ :main (some :digit)
 :digit (range "09")}

Using a table allows you to name patterns, and then use them
in other parts of the grammar.

PEGs that used named patterns start at :main

PEGs in Janet: Capturing output
'{

 :digit (range "09")

 :part (capture (between 1 3 :digit))

 :main (* :part "." :part "." :part "." :part)
}

● Given "192.168.0.2", matches and

returns @["192" "168" "0" "2"]

PEGs in Janet: Capturing output
● Captures in Janet PEGs

● Manipulate a "capture stack"
● (capture PATT)

● captures all of the characters matched in PATT, pushes
them to the capture stack

● (drop PATT) drops any captures from PATT

PEGs in Janet: Capturing output

● (constant "foo")
● puts "foo" on the capture stack, does not advance the match

'(* (constant "foo") (constant "bar"))

● gives: @["foo", "bar"] as a result, no matter the input string

PEGs in Janet: Capturing output
● (accumulate PATT)

● joins all of the captures in PATT into one string
● '{
:foo (constant "foo")
:bar (constant "bar")
:baz (constant "baz")
:main (accumulate (* :foo :bar :baz))
}

● Results in "foobarbaz"

PEGs in Janet: Compound matches

● (if COND PATT)
● attempt PATT if COND matches

● (if "A" 1)
● Will match one character as long as it's "A"

● (if "/" 3)
● Will match "/" and any two characters

PEGs in Janet: Compound matches

● (if-not COND PATT)
● attempt PATT if COND does not match

● (if-not "\n" 1)
● Will match one character as long as it is not newline

● (if-not (set "\t\r\n ") 1)
● Will match any character not in the set of tab/return/newline/space

PEGs in Action
● How all of this comes together

– CSV

– JSON

PEGs in Action: CSV All at once
 '{
 :nl (+ "\r\n" "\r" "\n")
 :dquote "\""
 :empty 0
 :space? (any " ")
 :capture-ddquote
 (if (* :dquote :dquote) (* (drop 2) (constant `"`)))
 :char-in-quotes (capture (if-not :dquote 1))
 :separators (+ :dquote "," :nl)
 :textdata (+ (capture (some (if-not :separators 1)))
 (* :dquote
 (accumulate
 (any (+ :capture-ddquote :char-in-quotes)))
 :dquote))
 :field (accumulate (+ (* :space? :textdata :space?) :empty))
 :row (* :field (any (* "," :field)) (+ :nl 0))
 :main (some (group :row))}

PEGs in action: CSV

● This is a modified version of the CSV grammar at
https://github.com/zenlor/janet-csv

PEGs in Action: CSV 1/4

 '{

:nl (+ "\r\n" "\r" "\n")

:dquote "\""

:space? (any " ")

:empty 0

This is a slightly longer grammar, the code in the following slides
are inside the '{ below

PEGs in Action: CSV 2/4

 :capture-ddquote (if
 (* :dquote :dquote)
 (* (drop 2) (constant `"`)))

:char-in-quotes (capture (if-not :dquote 1))

PEGs in Action: CSV 3/4

:separators (+ :dquote "," :nl)
:textdata
 (+
 (capture (some (if-not :separators 1)))
 (* :dquote
 (accumulate
 (any (+ :capture-ddquote :char-in-quotes)))
 :dquote))

PEGs in Action: CSV 4/4

:field
 (accumulate (+ (* :space? :textdata :space?) :empty))

:row (* :field (any (* "," :field)) (+ :nl 0))

:main (some (group :row))
}

PEGs in Action: CSV All at once
 '{
 :nl (+ "\r\n" "\r" "\n")
 :dquote "\""
 :empty 0
 :space? (any " ")
 :capture-ddquote
 (if (* :dquote :dquote) (* (drop 2) (constant `"`)))
 :char-in-quotes (capture (if-not :dquote 1))
 :separators (+ :dquote "," :nl)
 :textdata (+ (capture (some (if-not :separators 1)))
 (* :dquote
 (accumulate
 (any (+ :capture-ddquote :char-in-quotes)))
 :dquote))
 :field (accumulate (+ (* :space? :textdata :space?) :empty))
 :row (* :field (any (* "," :field)) (+ :nl 0))
 :main (some (group :row))
 }

PEGs in Action: JSON
 (def json-parser
 ~{:null (/ (<- "null") ,|[$:null])
 :bool (/ (<- (+ "true" "false")) ,|[$:bool])
 :number (/ (<- (* (? "-") :d+ (? (* "." :d+)))) ,|[$:number])
 :string (/ (* "\"" (<- (to (* (> -1 (not "\\")) "\"")))
 (* (> -1 (not "\\")) "\"")) ,|[$:string])
 :array (/ (* "[" :value (any (* :s* "," :value)) "]") ,|[$& :array])
 :object (/ (* "{" :s* :string :s* ":" :value
 (any (* :s* "," :s* :string :s* ":" :value))
 "}") ,|[(from-pairs (partition 2 $&)) :object])
 :value (* :s* (+ :null :bool :number :string :array :object) :s*)
 :unmatched (/ (<- (some 1)) ,|[$:unmatched])
 :main (some (+ :value "\n" :unmatched))})

Example of a json parser in a PEG (using a lot of shorthands)
Source: https://calebfiggers.com/blog/parsing-json-in-13-lines-of-janet/

Tips for working with PEGs in Janet

● Have a number of test cases on hand
● Build up the PEG incrementally
● Remember that you have to account for -every- character

Tips for working with Janet
● If this is your first paren-based language, I found rainbow

parens to be very useful
● https://janet-lang.org/api/index.html

^ this is where I spend a lot of my "look up a thing" time
● (doc function) surfaces much of the same information

Thanks!

● https://janet-lang.org/
● https://junglecoder.com/playgrounds/PEGs/
● https://junglecoder.com/talks/PEGs/slides.pdf
● https://junglecoder.com/zines/pegs/PEG_zine.pdf
● https://junglecoder.com/contact/ if you want to find me

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

