
 
PEGs in Janet for fun and Profit



intro
● Thanks to Justin Huffman for the topic and a starting point
● Any errors or poor pacing are my own



intro
● Andrew Owen, pronouns: he/him
● Software Developer: games, languages, web apps
● https://junglecoder.com/talks/PEGs/slides.pdf



What we'll be covering

● What is parsing?
● Parsing Knife-work
● Comprehensive parsing
● PEGs (in detail)



What is parsing?



What is parsing?
● Giving Flat Data Structure



Parsing: Flat data to structured data

● Two general approaches
● Knife-like, small target, a lot of noise, slice out interesting bits, 

permissive of incorrcetly formatted data
● Comprehensive sorting of every character to a place and 

category, usually error if data formatted incorretcly 



Parsing Knifework
● Slicing out the interesting bits



Parsing Knifework: Usual suspects
CLI Tools

● cut
● sed
● grep

Programming techniques
● substring
● split
● explode
● gsub
● gmatch



Parsing knifework: Boxed in
● Fixed width data is easy to deal with

Data:
boxbox&box
boxHEADbox
boxBODYbox
boxFEETbox
boxbox&box

Parsing:
tail -n +2 data.txt |
head -n 3 |
cut -b 4-7

Result:
HEAD
BODY
FEET



Parsing knifework: Boxed in
● But doesn't cope with variance well

Data:
boxbox&box
boxHEADbox
boxARMSbox
boxFINGERbox
boxBODYbox
boxFEETbox
boxbox&box

Parsing:
tail -n +2 data.txt |
head -n 5 |
cut -b 4-7

Result:
HEAD
ARMS
FING
BODY
FEET



Parsing knifework: Boxed in
● Patterns can help pick things out

Data:
boxbox&box
boxHEADbox
boxARMSbox
boxFINGERbox
boxBODYbox
boxFEETbox
boxbox&box

Parsing:

sed -E "s/&|box//g" data.txt

Result:

HEAD
ARMS
FINGER
BODY
FEET



Parsing knifework: CSV
● Sometimes a format is simple

Data:

x,text,y
10,Hello,20
10,World!,40

Parsing:

cut -f 2 -d, data.csv

Result:

text
Hello
World!



Parsing knifework: CSV
● Until it isn't

Data:
x,text,y
10,"Hello,
World!",20
10,Enjoy this?,60

Parsing code:

cut -f 2 -d, data.csv

Result:

text
"Hello
20
Enjoy this?



Comprehensive parsing
● Parsing in Scripts 201



Comprehensive parsing
● Characters don't always mean the same thing



Comprehensive parsing
● String literals, outside `"` means "start a string literal"
● Inside a string literal, `"` means "end a string literal"



Tools for comprehensive parsing
Programs

● yacc/lexx
● ANTLR
● jq
● csvkit
● nushell
● Powershell

In Code
● Big Switch Statements
● Argument Parsing
● Recursive Descent Parsing
● Parser Combinators
● PEGs



Parsing Expression Grammars
● PEGs model Recursive Descent parsers
● Loosely equivalent to a collection of functions that

● Call into each other
● Switch on input tokens
● Build up a structure



Parsing Expression Grammars

● PEGs in use
● Janet uses PEGs in lieu of regex 

● it even has an `re` library that uses a PEG to compile a subset of regex 
syntax to another PEG

● Python's parser got switched to a PEG in 2020 (PEP 617)
● DuckDB plans on switching to a PEG parser for flexibility

( https://duckdb.org/2024/11/22/runtime-extensible-parsers.html )



Parsing Expression Grammars

● PEG Libraries
● Lua, lpeg, has name recognition
● Janet, has PEGs built in
● (many other exist for other languages, Raku's grammars are similar)



Janet
● Janet, a quick review

● https://janet-lang.org 
● Built as a lisp-alike language, macros, parens
● Inspired by Lua & Clojure, about 2x-3x bigger than Lua
● Packs a lot into a small package (cross platform async runtime, PEGs, etc)

# FizzBuzz in Janet
(defn divides [by n] (zero? (mod n by)))
(each n (range 101)
      (cond (divides 15 n) (print "FizzBuzz")
            (divides 5 n)  (print "Buzz")
            (divides 3 n)  (print "Fizz")
            true           (print n)))   



PEGs in Janet

● I'll be using Janet's PEG syntax from here on out, a small 
example looks like this:

(def pattern '(* "abc" "def"))



Janet: Macros
● PEGs in Janet use macros and quotation
● Mostly to keep default Janet logic from applying, 

so that the PEG engine can turn the AST into a PEG directly

'(this is a quoted list)

'{:and this :is a quoted table}



PEGs in Janet: Constants
● Numbers match that number of characters

'12 # Matches any 12 characters

● Strings match themselves
"foo" # Matches "foo" literally



PEGs in Janet: Sequence

'(* "a" "b" "c")
# or
'(sequence "a" "b" "c")

Matches the string "abc"



PEGs in Janet: Choice

'(+ "a" "b" "c")
# or
'(choice "a" "b" "c")

● Matches "a", "b" or "c"



PEGs in Janet: Range
● Range matches any character in the given range(s)

'(range "04" "59")
# same as
'(range "09") 
# or
'(+ "0" "1" "2" "3" "4" 
         "5" "6" "7" "8" "9")

● Matches "0", "9" and so on



PEGs in Janet: Repeating a pattern

# 0 or more repetitions
'(any (range "09"))

# 1 or more repetitions
'(some (range "09"))

# 2 to 4 repetitions
'(between 2 4 (range "09"))

# A specific number of repetitions
'(repeat 4 (range "09"))



PEGs in Janet: Naming Patterns

'{ :main (some :digit)
   :digit (range "09")}

Using a table allows you to name patterns, and then use them 
in other parts of the grammar.
 
PEGs that used named patterns start at :main



PEGs in Janet: Capturing output
'{

 :digit (range "09")

 :part (capture (between 1 3 :digit))

 :main (* :part "." :part "." :part "." :part)
}

● Given "192.168.0.2", matches and

returns @["192" "168" "0" "2"]



PEGs in Janet: Capturing output
● Captures in Janet PEGs

● Manipulate a "capture stack"
● (capture PATT) 

● captures all of the characters matched in PATT, pushes 
them to the capture stack

● (drop PATT) drops any captures from PATT



PEGs in Janet: Capturing output

● (constant "foo") 
● puts "foo" on the capture stack, does not advance the match

'(* (constant "foo") (constant "bar"))

● gives: @["foo", "bar"] as a result, no matter the input string 



PEGs in Janet: Capturing output
● (accumulate PATT) 

● joins all of the captures in PATT into one string
● '{
:foo (constant "foo")
:bar (constant "bar")
:baz (constant "baz")
:main (accumulate (* :foo :bar :baz))
}

● Results in "foobarbaz"



PEGs in Janet: Compound matches

● (if COND PATT)
● attempt PATT if COND matches

● (if "A" 1)
● Will match one character as long as it's "A"

● (if "/" 3)
● Will match "/" and any two characters 



PEGs in Janet: Compound matches

● (if-not COND PATT)
● attempt PATT if COND does not match

● (if-not "\n" 1)
● Will match one character as long as it is not newline

● (if-not (set "\t\r\n ") 1)
● Will match any character not in the set of tab/return/newline/space



PEGs in Action
● How all of this comes together

– CSV

– JSON



PEGs in Action: CSV All at once
   '{
     :nl (+ "\r\n" "\r" "\n") 
     :dquote "\""
     :empty 0
     :space? (any " ")
     :capture-ddquote 
        (if (* :dquote :dquote) (* (drop 2) (constant `"`)))
     :char-in-quotes (capture (if-not :dquote 1))
     :separators (+ :dquote "," :nl)
     :textdata (+ (capture (some (if-not :separators 1)))
                  (* :dquote
                     (accumulate
                        (any (+ :capture-ddquote :char-in-quotes)))
                     :dquote))
     :field (accumulate (+ (* :space? :textdata :space?) :empty))
     :row (* :field (any (* "," :field)) (+ :nl 0))
     :main (some (group :row))}



PEGs in action: CSV

● This is a modified version of the CSV grammar at 
https://github.com/zenlor/janet-csv



PEGs in Action: CSV 1/4

 '{ 

:nl (+ "\r\n" "\r" "\n") 

:dquote "\""

:space? (any " ")

:empty 0

This is a slightly longer grammar, the code in the following slides 
are inside the '{ below



PEGs in Action: CSV 2/4

 :capture-ddquote (if 
                    (* :dquote :dquote) 
                    (* (drop 2) (constant `"`)))

:char-in-quotes (capture (if-not :dquote 1))
 



PEGs in Action: CSV 3/4

:separators (+ :dquote "," :nl)
:textdata 
  (+ 
    (capture (some (if-not :separators 1)))
    (* :dquote 
       (accumulate
         (any (+ :capture-ddquote :char-in-quotes)))
       :dquote))



PEGs in Action: CSV 4/4

:field 
  (accumulate (+ (* :space? :textdata :space?) :empty))

:row (* :field (any (* "," :field)) (+ :nl 0))

:main (some (group :row))
}



PEGs in Action: CSV All at once
   '{
     :nl (+ "\r\n" "\r" "\n") 
     :dquote "\""
     :empty 0
     :space? (any " ")
     :capture-ddquote 
        (if (* :dquote :dquote) (* (drop 2) (constant `"`)))
     :char-in-quotes (capture (if-not :dquote 1))
     :separators (+ :dquote "," :nl)
     :textdata (+ (capture (some (if-not :separators 1)))
                  (* :dquote
                     (accumulate
                        (any (+ :capture-ddquote :char-in-quotes)))
                     :dquote))
     :field (accumulate (+ (* :space? :textdata :space?) :empty))
     :row (* :field (any (* "," :field)) (+ :nl 0))
     :main (some (group :row))
    }



PEGs in Action: JSON
   (def json-parser
  ~{:null (/ (<- "null") ,|[$ :null])
    :bool (/ (<- (+ "true" "false")) ,|[$ :bool])
    :number (/ (<- (* (? "-") :d+ (? (* "." :d+)))) ,|[$ :number])
    :string (/ (* "\"" (<- (to (* (> -1 (not "\\")) "\""))) 
                  (* (> -1 (not "\\")) "\"")) ,|[$ :string])
    :array (/ (* "[" :value (any (* :s* "," :value)) "]") ,|[$& :array])
    :object (/ (* "{" :s* :string :s* ":" :value
                  (any (* :s* "," :s* :string :s* ":" :value))
                  "}") ,|[(from-pairs (partition 2 $&)) :object])
    :value (* :s* (+ :null :bool :number :string :array :object) :s*)
    :unmatched (/ (<- (some 1)) ,|[$ :unmatched])
    :main (some (+ :value "\n" :unmatched))})

Example of a json parser in a PEG (using a lot of shorthands)
Source:  https://calebfiggers.com/blog/parsing-json-in-13-lines-of-janet/ 



Tips for working with PEGs in Janet

● Have a number of test cases on hand
● Build up the PEG incrementally
● Remember that you have to account for -every- character



Tips for working with Janet
● If this is your first paren-based language, I found rainbow 

parens to be very useful
● https://janet-lang.org/api/index.html 

^ this is where I spend a lot of my "look up a thing" time
● (doc function) surfaces much of the same information



Thanks!

● https://janet-lang.org/ 
● https://junglecoder.com/playgrounds/PEGs/
● https://junglecoder.com/talks/PEGs/slides.pdf 
● https://junglecoder.com/zines/pegs/PEG_zine.pdf 
● https://junglecoder.com/contact/ if you want to find me
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